Empowering News Recommendation with Pre-trained Language Models

Author:

Wu Chuhan1,Wu Fangzhao2,Qi Tao1,Huang Yongfeng1

Affiliation:

1. Tsinghua University, Beijing, China

2. Microsoft Research Asia, Beijing, China

Funder

National Natural Science Foundation of China

Publisher

ACM

Reference33 articles.

1. Mingxiao An Fangzhao Wu Chuhan Wu Kun Zhang Zheng Liu and Xing Xie. 2019. Neural News Recommendation with Long-and Short-term User Representations. In ACL. 336--345. Mingxiao An Fangzhao Wu Chuhan Wu Kun Zhang Zheng Liu and Xing Xie. 2019. Neural News Recommendation with Long-and Short-term User Representations. In ACL. 336--345.

2. Hangbo Bao Li Dong Furu Wei Wenhui Wang Nan Yang Xiaodong Liu Yu Wang Jianfeng Gao Songhao Piao Ming Zhou etal 2020. Unilmv2: Pseudo-masked language models for unified language model pre-training. In ICML. PMLR 642--652. Hangbo Bao Li Dong Furu Wei Wenhui Wang Nan Yang Xiaodong Liu Yu Wang Jianfeng Gao Songhao Piao Ming Zhou et al. 2020. Unilmv2: Pseudo-masked language models for unified language model pre-training. In ICML. PMLR 642--652.

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys);Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Multimodal Pretraining, Adaptation, and Generation for Recommendation: A Survey;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Bridging Items and Language: A Transition Paradigm for Large Language Model-Based Recommendation;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. A survey on large language models for recommendation;World Wide Web;2024-08-22

5. How Can Recommender Systems Benefit from Large Language Models: A Survey;ACM Transactions on Information Systems;2024-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3