Thermal-aware Test Scheduling Strategy for Network-on-Chip based Systems

Author:

Manna Kanchan1,Sagar Chatla Swami2,Chattopadhyay Santanu2,Sengupta Indranil2

Affiliation:

1. Indian Institute of Technology (IIT) Patna, India

2. Indian Institute of Technology (IIT) Kharagpur, India

Abstract

Rapid progress in technology scaling has introduced massive parallel computing systems with multiple cores on the integrated circuit (IC), in which a flexible and scalable packet-switched architecture, Network-on-Chip (NoC), is commonly used for communication among the cores. However, technology scaling has also increased the susceptibility to internal defects in such systems. So, manufacturing tests of such multicore systems is crucial and this is a complex and time-consuming process. Due to stress on time-to-market, test engineers focus on the reduction of testtime and perform parallel tests of cores. Due to aggressive technology scaling into the nanometer regime, power consumption is also becoming a significant burden. Moreover, power consumption during manufacturing tests is more as compared to normal operation. In addition, peak power consumption is often significantly higher than the average power values. The consumed power leads to high temperature and creates hotspots, which in turn leads to failure of good parts, resulting in yield loss. Thermal safety during testing is an utmost challenging problem in NoC-based multicore systems, including three-dimensional NoC-based (3D NoC) multicore systems due to stacking of layers. This work proposes a preemptive test scheduling technique for NoC-based multicore systems to reduce the testtime by minimizing conflicts of resource usage. The preemptive test scheduling problem has been formulated using Integer Linear Programming (ILP). In this article, authors have also presented a thermal-aware test scheduling technique to test cores in 2D as well as 3D stacked NoC-based multicore systems using a Particle Swarm Optimization (PSO) based approach. To improve the solution further, several innovative augmentation techniques have been incorporated in the basic PSO. Experimental results highlight the effectiveness of the proposed method in reducing testtime and peak temperature under the power constraints and achieve a tradeoff between testtime and peak temperature.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3