Bisimulation as path type for guarded recursive types

Author:

Møgelberg Rasmus Ejlers1,Veltri Niccolò1

Affiliation:

1. IT University of Copenhagen, Denmark

Abstract

In type theory, coinductive types are used to represent processes, and are thus crucial for the formal verification of non-terminating reactive programs in proof assistants based on type theory, such as Coq and Agda. Currently, programming and reasoning about coinductive types is difficult for two reasons: The need for recursive definitions to be productive, and the lack of coincidence of the built-in identity types and the important notion of bisimilarity. Guarded recursion in the sense of Nakano has recently been suggested as a possible approach to dealing with the problem of productivity, allowing this to be encoded in types. Indeed, coinductive types can be encoded using a combination of guarded recursion and universal quantification over clocks. This paper studies the notion of bisimilarity for guarded recursive types in Ticked Cubical Type Theory, an extension of Cubical Type Theory with guarded recursion. We prove that, for any functor, an abstract, category theoretic notion of bisimilarity for the final guarded coalgebra is equivalent (in the sense of homotopy type theory) to path equality (the primitive notion of equality in cubical type theory). As a worked example we study a guarded notion of labelled transition systems, and show that, as a special case of the general theorem, path equality coincides with an adaptation of the usual notion of bisimulation for processes. In particular, this implies that guarded recursion can be used to give simple equational reasoning proofs of bisimilarity. This work should be seen as a step towards obtaining bisimilarity as path equality for coinductive types using the encodings mentioned above.

Funder

DFF

VILLUM FONDEN

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Trees: Calculating Graph-Based Compilers (Functional Pearl);Proceedings of the ACM on Programming Languages;2024-08-15

2. Formalizing CCS and π-calculus in Guarded Cubical Agda;Journal of Logical and Algebraic Methods in Programming;2023-02

3. A Meta-Probabilistic-Programming Language for Bisimulation of Probabilistic and Non-Well-Founded Type Systems;Artificial General Intelligence;2023

4. A totally predictable outcome: an investigation of traversals of infinite structures;Proceedings of the 15th ACM SIGPLAN International Haskell Symposium;2022-09-06

5. Monadic compiler calculation (functional pearl);Proceedings of the ACM on Programming Languages;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3