Gender Biases in Error Mitigation by Voice Assistants

Author:

Mahmood Amama1ORCID,Huang Chien-Ming1ORCID

Affiliation:

1. Johns Hopkins University, Baltimore, MD, USA

Abstract

Commercial voice assistants are largely feminized and associated with stereotypically feminine traits such as warmth and submissiveness. As these assistants continue to be adopted for everyday uses, it is imperative to understand how the portrayed gender shapes the voice assistant's ability to mitigate errors, which are still common in voice interactions. We report a study (N=40) that examined the effects of voice gender (feminine, ambiguous, masculine), error mitigation strategies (apology, compensation) and participant's gender on people's interaction behavior and perceptions of the assistant. Our results show that AI assistants that apologized appeared warmer than those offered compensation. Moreover, male participants preferred apologetic feminine assistants over apologetic masculine ones. Furthermore, male participants interrupted AI assistants regardless of perceived gender more frequently than female participants when errors occurred. Our results suggest that the perceived gender of a voice assistant biases user behavior, especially for male users, and that an ambiguous voice has the potential to reduce biases associated with gender-specific traits.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Reference61 articles.

1. Gavin Abercrombie, Amanda Cercas Curry, Mugdha Pandya, and Verena Rieser. 2021. Alexa, Google, Siri: What are Your Pronouns? Gender and Anthropomorphism in the Design and Perception of Conversational Assistants. arXiv preprint arXiv:2106.02578 (2021).

2. The effect of gender stereotypes on artificial intelligence recommendations

3. Intelligent Voice Instructor-assistant System for Collaborative and Interactive Classes

4. The universality of warmth and competence: A response to brands as intentional agents

5. Andreas Bucher Dario Staehelin Mateusz Dolata and Gerhard Schwabe. 2022. Form Follows Function: Designing For Tensions Of Conversational Agents In Service Encounters. (2022).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3