Optimization of Sparse Matrix Computation for Algebraic Multigrid on GPUs

Author:

Wang Yizhuo1ORCID,Chang Fangli1ORCID,Wei Bingxin1ORCID,Gao Jianhua2ORCID,Ji Weixing2ORCID

Affiliation:

1. Beijing Institute of Technology, Beijing, China

2. Beijing Normal University, Beijing, China

Abstract

AMG is one of the most efficient and widely used methods for solving sparse linear systems. The computational process of AMG mainly consists of a series of iterative calculations of generalized sparse matrix-matrix multiplication (SpGEMM) and sparse matrix-vector multiplication (SpMV). Optimizing these sparse matrix calculations is crucial for accelerating solving linear systems. In this paper, we first focus on optimizing the SpGEMM algorithm in AmgX, a popular AMG library for GPUs. We propose a new algorithm called SpGEMM-upper, which achieves an average speedup of 2.02× on Tesla V100 and 1.96× on RTX 3090 against the original algorithm. Next, through experimental investigation, we conclude that no single SpGEMM library or algorithm performs optimally for most sparse matrices, and the same holds true for SpMV. Therefore, we build machine learning-based models to predict the optimal SpGEMM and SpMV used in the AMG calculation process. Finally, we integrate the prediction models, SpGEMM-upper, and other selected algorithms into a framework for adaptive sparse matrix computation in AMG. Our experimental results prove that the framework achieves promising performance improvements on the test set.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference51 articles.

1. Achi Brandt, Steve McCormick, and John Ruge. Algebraic Multigrid (AMG) for Automatic Multigrid Solution with Application to Geodetic Computations. Technical report, Colorado State University, Fort Collins, CO. (1983).

2. V-cycle Multigrid Algorithms for Discontinuous Galerkin Methods on Non-nested Polytopic Meshes

3. Automatic Selection of Sparse Matrix Representation on GPUs

4. Sparse matrix format selection with multiclass SVM for SpMV on GPU;Benatia Akrem;45th International Conference on Parallel Processing (ICPP),2016

5. Bridging the gap between deep learning and sparse matrix format selection;Zhao Yue;Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3