Security of random data perturbation methods

Author:

Muralidhar Krishnamurty1,Sarathy Rathindra2

Affiliation:

1. Univ. of Kentucky, Lexington

2. Illinois State Univ., Normal

Abstract

Statistical databases often use random data perturbation (RDP) methods to protect against disclosure of confidential numerical attributes. One of the key requirements of RDP methods is that they provide the appropriate level of security against snoopers who attempt to obtain information on confidential attributes through statistical inference. In this study, we evaluate the security provided by three methods of perturbation. The results of this study allow the database administrator to select the most effective RDP method that assures adequate protection against disclosure of confidential information.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference7 articles.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-series Anonymization of Tabular Health Data using Generative Adversarial Network;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

2. A Comprehensive Review of Privacy Preserving Data Publishing (PPDP) Algorithms for Multiple Sensitive Attributes (MSA);Information Security and Privacy in Smart Devices;2023-03-31

3. Modified RNP Privacy Protection Data Mining Method as Big Data Security;2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS;2021-10-28

4. Equation Chapter 1 Section 1 Differentially Private High-Dimensional Binary Data Publication via Adaptive Bayesian Network;Wireless Communications and Mobile Computing;2021-07-16

5. A New Range Noise Perturbation Method based on Privacy Preserving Data Mining;2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS);2020-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3