Tight Lower Bounds for Directed Cut Sparsification and Distributed Min-Cut

Author:

Cheng Yu1ORCID,Li Max2ORCID,Lin Honghao2ORCID,Tai Zi-Yi2ORCID,Woodruff David P.2ORCID,Zhang Jason2ORCID

Affiliation:

1. Brown University, Providence, RI, USA

2. Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

In this paper, we consider two fundamental cut approximation problems on large graphs. We prove new lower bounds for both problems that are optimal up to logarithmic factors. The first problem is approximating cuts in balanced directed graphs. In this problem, we want to build a data structure that can provide (1 ± ε)-approximation of cut values on a graph with n vertices. For arbitrary directed graphs, such a data structure requires Ω(n 2 ) bits even for constant ε. To circumvent this, recent works study β-balanced graphs, meaning that for every directed cut, the total weight of edges in one direction is at most β times the total weight in the other direction. We consider the for-each model, where the goal is to approximate each cut with constant probability, and the for-all model, where all cuts must be preserved simultaneously. We improve the previous Ømega(n √β/ε) lower bound in the for-each model to ~Ω (n √β /ε) and we improve the previous Ω(n β/ε) lower bound in the for-all model to Ω(n β/ε 2 ). This resolves the main open questions of (Cen et al., ICALP, 2021). The second problem is approximating the global minimum cut in a local query model, where we can only access the graph via degree, edge, and adjacency queries. We prove an ΩL(min m, m/ε 2 k R) lower bound for this problem, which improves the previous ΩL(m/k R) lower bound, where m is the number of edges, k is the minimum cut size, and we seek a (1+ε)-approximation. In addition, we show that existing upper bounds with minor modifications match our lower bound up to logarithmic factors.

Funder

NSF Award

National Institute of Health

Publisher

Association for Computing Machinery (ACM)

Reference20 articles.

1. Graph sketches

2. On Sketching Quadratic Forms

3. Twice-Ramanujan Sparsifiers

4. Benczúr, A. A., and Karger, D. R. Approximating s-t minimum cuts in Õ(n2) time. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC) (1996), ACM, pp. 47--55.

5. Leibniz International Proceedings in Informatics (LIPIcs);Bishnu A.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3