Multi-View Graph Convolutional Networks with Differentiable Node Selection

Author:

Chen Zhaoliang1ORCID,Fu Lele2ORCID,Xiao Shunxin3ORCID,Wang Shiping3ORCID,Plant Claudia4ORCID,Guo Wenzhong3ORCID

Affiliation:

1. College of Computer and Data Science, Fujian Provincial Key Laboratory ofNetwork Computing and Intelligent Information Processing, Fuzhou University, China

2. School of Systems Science and Engineering, Sun Yat-sen University, China

3. College of Computer and Data Science, Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, China

4. Faculty of Computer Science, ds:UniVie, University of Vienna, Austria

Abstract

Multi-view data containing complementary and consensus information can facilitate representation learning by exploiting the intact integration of multi-view features. Because most objects in the real world often have underlying connections, organizing multi-view data as heterogeneous graphs is beneficial to extracting latent information among different objects. Due to the powerful capability to gather information of neighborhood nodes, in this article, we apply Graph Convolutional Network (GCN) to cope with heterogeneous graph data originating from multi-view data, which is still under-explored in the field of GCN. In order to improve the quality of network topology and alleviate the interference of noises yielded by graph fusion, some methods undertake sorting operations before the graph convolution procedure. These GCN-based methods generally sort and select the most confident neighborhood nodes for each vertex, such as picking the top- k nodes according to pre-defined confidence values. Nonetheless, this is problematic due to the non-differentiable sorting operators and inflexible graph embedding learning, which may result in blocked gradient computations and undesired performance. To cope with these issues, we propose a joint framework dubbed Multi-view Graph Convolutional Network with Differentiable Node Selection (MGCN-DNS), which is constituted of an adaptive graph fusion layer, a graph learning module, and a differentiable node selection schema. MGCN-DNS accepts multi-channel graph-structural data as inputs and aims to learn more robust graph fusion through a differentiable neural network. The effectiveness of the proposed method is verified by rigorous comparisons with considerable state-of-the-art approaches in terms of multi-view semi-supervised classification tasks, and the experimental results indicate that MGCN-DNS achieves pleasurable performance on several benchmark multi-view datasets.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3