Exploiting Content Spatial Distribution to Improve Detection of Intrusions

Author:

Angiulli Fabrizio1ORCID,Argento Luciano1,Furfaro Angelo1

Affiliation:

1. University of Calabria, Rende(CS), Italy

Abstract

We present PCkAD, a novel semisupervised anomaly-based IDS (Intrusion Detection System) technique, detecting application-level content-based attacks. Its peculiarity is to learn legitimate payloads by splitting packets into chunks and determining the within-packet distribution of n-grams. This strategy is resistant to evasion techniques as blending. We prove that finding the right legitimate content is NP-hard in the presence of chunks. Moreover, it improves the false-positive rate for a given detection rate with respect to the case where the spatial information is not considered. Comparison with well-known IDSs using n-grams highlights that PCkAD achieves state-of-the-art performances.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference49 articles.

1. Brandie Anderson Sue Barsamian Dustin Childs Jason Ding Joy Marie Forsythe Brian Gorenc Angela Gunn Alexander Hoole Howard Miller Sasi Siddharth Muthurajan Yekaterina Tsipenyuk O’Neil John Park Oleg Petrovsky Barak Raz Nidhi Shah Vanja Svajcer Ken Tietjen and Jewel Timpe. 2016. Cyber Risk Report 2016. Technical Report. Hewlett Packard Enterprise. Brandie Anderson Sue Barsamian Dustin Childs Jason Ding Joy Marie Forsythe Brian Gorenc Angela Gunn Alexander Hoole Howard Miller Sasi Siddharth Muthurajan Yekaterina Tsipenyuk O’Neil John Park Oleg Petrovsky Barak Raz Nidhi Shah Vanja Svajcer Ken Tietjen and Jewel Timpe. 2016. Cyber Risk Report 2016. Technical Report. Hewlett Packard Enterprise.

2. Exploiting N-Gram Location for Intrusion Detection

3. Fabrizio Angiulli Luciano Argento and Angelo Furfaro. 2017. PCkAD source code. Retrieved from https://github.com/F3nDis/PCkAD. Fabrizio Angiulli Luciano Argento and Angelo Furfaro. 2017. PCkAD source code. Retrieved from https://github.com/F3nDis/PCkAD.

4. A Naive Bayes Approach for Detecting Coordinated Attacks

5. One-and-a-Half-Class Multiple Classifier Systems for Secure Learning Against Evasion Attacks at Test Time

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating Deep Packet Inspection in Large-scale Data Processing;2022 9th International Conference on Future Internet of Things and Cloud (FiCloud);2022-08

2. A Novel Hybrid Intrusion Detection Using Flow-Based Anomaly Detection and Cross-Layer Features in Wireless Sensor Network;Automatic Control and Computer Sciences;2020-01

3. Effectiveness of Content Spatial Distribution Analysis in Securing IoT Environments;2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud);2018-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3