Cross-domain Recommendation via Dual Adversarial Adaptation

Author:

Su Hongzu1ORCID,Li Jingjing1ORCID,Du Zhekai1ORCID,Zhu Lei2ORCID,Lu Ke1ORCID,Shen Heng Tao1ORCID

Affiliation:

1. University of Electronic Science and Technology of China, China

2. School of Electronic and Information Engineering, Tongji University, China

Abstract

Data scarcity is a perpetual challenge of recommendation systems, and researchers have proposed a variety of cross-domain recommendation methods to alleviate the problem of data scarcity in target domains. However, in many real-world cross-domain recommendation systems, the source domain and the target domain are sampled from different data distributions, which obstructs the cross-domain knowledge transfer. In this article, we propose to specifically align the data distributions between the source domain and the target domain to alleviate imbalanced sample distribution and thus challenge the data scarcity issue in the target domain. Technically, our proposed approach builds a dual adversarial adaptation (DAA) framework to adversarially train the target model together with a pre-trained source model. Two domain discriminators play the two-player minmax game with the target model and guide the target model to learn reliable domain-invariant features that can be transferred across domains. At the same time, the target model is calibrated to learn domain-specific information of the target domain. In addition, we formulate our approach as a plug-and-play module to boost existing recommendation systems. We apply the proposed method to address the issues of insufficient data and imbalanced sample distribution in real-world Click-through Rate/Conversion Rate predictions on two large-scale industrial datasets. We evaluate the proposed method in scenarios with and without overlapping users/items, and extensive experiments verify that the proposed method is able to significantly improve the prediction performance on the target domain. For instance, our method can boost PLE with a performance improvement of 15.4% in terms of Area Under Curve compared with single-domain PLE on our private game dataset. In addition, our method is able to surpass single-domain MMoE by 6.85% on the public datasets. Code: https://github.com/TL-UESTC/DAA .

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Tencent Marketing Solution Rhino-Bird Focused Research Program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference62 articles.

1. Robert M. Bell and Yehuda Koren. 2007. Improved neighborhood-based collaborative filtering. Citeseer. https://www.cs.uic.edu/liub/KDD-cup-2007/proceedings/Neighbor-Koren.pdf

2. Cross-Domain Mediation in Collaborative Filtering

3. Cross-Domain Recommender Systems

4. Values of User Exploration in Recommender Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3