Beyond Backtracking: Connections in Fine-Grained Concurrent Separation Logic

Author:

Mulder Ike1ORCID,Czajka Łukasz2ORCID,Krebbers Robbert1ORCID

Affiliation:

1. Radboud University Nijmegen, Netherlands

2. TU Dortmund, Germany

Abstract

Concurrent separation logic has been responsible for major advances in the formal verification of fine-grained concurrent algorithms and data structures such as locks, barriers, queues, and reference counters. The key ingredient of the verification of a fine-grained program is an invariant, which relates the physical data representation (on the heap) to a logical representation (in mathematics) and to the state of the threads (using a form of ghost state). An invariant is typically represented as a disjunction of logical states, but this disjunctive nature makes invariants a difficult target for automated verification. Current approaches roughly suffer from two problems. They use backtracking to introduce disjunctions in an uninformed manner, which can lead to unprovable goals if an appropriate case analysis has not been made before choosing the disjunct. Moreover, they eliminate disjunctions too eagerly, which can cause poor efficiency. While disjunctions are no problem for automated provers based on classical (i.e., non-separating) logic, the challenges with disjunctions are prominent in the study of proof automation for intuitionistic logic. We take inspiration from that area—specifically, based on ideas from connection calculus , we design a simple multi-succedent calculus for separation logic with disjunctions featuring a novel concept of a connection . While our calculus is not complete, it has the advantage that it can be extended with features of the state-of-the-art concurrent separation logic Iris (such as modalities, higher-order quantification, ghost state, and invariants), and can be implemented effectively in the Coq proof assistant with little need for backtracking. We evaluate the practicality on 24 challenging benchmarks, 14 of which we can verify fully automatically.

Funder

NWO

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unification for Subformula Linking under Quantifiers;Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs;2024-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3