Data and Computation Reuse in CNNs Using Memristor TCAMs

Author:

de Moura Rafael Fão1ORCID,de Lima Joao Paulo Cardoso1ORCID,Carro Luigi1ORCID

Affiliation:

1. Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil

Abstract

Exploiting computational and data reuse in CNNs is crucial for the successful design of resource-constrained platforms. In image recognition applications, high levels of input locality and redundancy present in CNNs have become the golden goose for skipping costly arithmetic operations. One promising technique for this consists in storing function responses of some input patterns into offline lookup tables and replacing online computation with search operations, which are highly efficient when implemented by emerging non-volatile memory technologies. In this work, we rethink both algorithm and architecture for exploiting locality and reuse opportunities by replacing entire convolutions with searches on Content-addressable Memories. By previously calculating convolution results and building compact lookup tables with our novel clustering algorithm, one can evaluate activations at constant time complexity, also requiring a single read operation of the current input tensor. Then, we devise a reconfigurable array of processing elements based on memristive Ternary Content-addressable Memories to efficiently implement the algorithmic solution and meet the flexibility requirements of several CNN architectures. Results show that our design reduces the number of multiplications and memory accesses proportionally to the number of convolutional layer channels. The average performance is 1,172 and 82 FPS for AlexNet and VGG-16 models, thus outperforming state-of-the-art works by 13×.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001

National Council for Scientific and Technological Development

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3