On Heuristic Solutions to the Simple Offset Assignment Problem in Address-Code Optimization

Author:

Shokry Hesham1,El-Boghdadi Hatem M.2

Affiliation:

1. Lero -- the Irish Software Engineering Research Centre

2. Cairo University, Egypt

Abstract

The increasing demand for more functionality in embedded systems applications nowadays requires efficient generation of compact code for embedded DSP processors. Because such processors have highly irregular data-paths, compilers targeting those processors are challenged with the automatic generation of optimized code with competent quality comparable to hand-crafted code. A major issue in code-generation is to optimize the placement of program variables in ROM relative to each other so as to reduce the overhead instructions dedicated for address computations. Modern DSP processors are typically shipped with a feature called Address Generation Unit (AGU) that provides efficient address-generation instructions for accessing program variables. Compilers targeting those processors are expected to exploit the AGU to optimize variables assignment. This article focuses on one of the basic offset-assignment problems; the Simple Offset Assignment (SOA) problem, where the AGU has only one Address Register and no Modify Registers. The notion of Tie-Break Function, TBF, introduced by Leupers and Marwedel [1996], has been used to guide the placement of variables in memory. In this article, we introduce a more effective form of the TBF; the Effective Tie-Breaking Function, ETBF, and show that the ETBF is better at guiding the variables placement process. Underpinning ETBF is the fact that program variables are placed in memory in sequence, with each variable having only two neighbors. We applied our technique to randomly generated graphs as well as to real-world code from the OffsetStone testbench [2010]). In previous work [Ali et al. 2008], our technique showed up to 7% reduction in overhead when applied to randomly-generated problem instances. We report in this article on a further experiment of our technique on real-code from the Offsetstone testbench. Despite the substantial improvement our technique has achieved when applied to random problem instances, we found that it shows slight overhead reduction when applied to real-world instances in OffsetStone, which agrees with similar existing experiments. We analyze these results and show that the ETBF defaults to TBF.

Funder

Science Foundation Ireland

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3