Affiliation:
1. Ghent University, Zwijnaarde, Belgium
2. Australian National University, Canberra, Australia
Abstract
Emerging workloads in cloud and data center infrastructures demand high main memory bandwidth and capacity. Unfortunately, DRAM alone is unable to satisfy contemporary main memory demands. High-bandwidth memory (HBM) uses 3D die-stacking to deliver 4–8× higher bandwidth. HBM has two drawbacks: (1) capacity is low, and (2) soft error rate is high. Hybrid memory combines DRAM and HBM to promise low fault rates, high bandwidth, and high capacity. Prior OS approaches manage HBM by mapping pages to HBM versus DRAM based on hotness (access frequency) and risk (susceptibility to soft errors). Unfortunately, these approaches operate at a coarse-grained page granularity, and frequent page migrations hurt performance.
This article proposes a new class of reliability-aware garbage collectors for hybrid HBM-DRAM systems that place hot and low-risk objects in HBM and the rest in DRAM. Our analysis of nine real-world Java workloads shows that: (1) newly allocated objects in the nursery are frequently written, making them both hot and low-risk, (2) a small fraction of the mature objects are hot and low-risk, and (3) allocation site is a good predictor for hotness and risk. We propose RiskRelief, a novel reliability-aware garbage collector that uses allocation site prediction to place hot and low-risk objects in HBM. Allocation sites are profiled offline and RiskRelief uses heuristics to classify allocation sites as DRAM and HBM. The proposed heuristics expose Pareto-optimal trade-offs between soft error rate (SER) and execution time. RiskRelief improves SER by 9× compared to an HBM-Only system while at the same time improving performance by 29% compared to a DRAM-Only system. Compared to a state-of-the-art OS approach for reliability-aware data placement, RiskRelief eliminates all page migration overheads, which substantially improves performance while delivering similar SER. Reliability-aware garbage collection opens up a new opportunity to manage emerging HBM-DRAM memories at fine granularity while requiring no extra hardware support and leaving the programming model unchanged.
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Information Systems,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reliability-Aware Runahead;2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2022-04