Technical Privacy Metrics

Author:

Wagner Isabel1ORCID,Eckhoff David2

Affiliation:

1. De Montfort University, Leicester, UK

2. TUMCREATE Ltd., CREATE Tower, Singapore

Abstract

The goal of privacy metrics is to measure the degree of privacy enjoyed by users in a system and the amount of protection offered by privacy-enhancing technologies. In this way, privacy metrics contribute to improving user privacy in the digital world. The diversity and complexity of privacy metrics in the literature make an informed choice of metrics challenging. As a result, instead of using existing metrics, new metrics are proposed frequently, and privacy studies are often incomparable. In this survey, we alleviate these problems by structuring the landscape of privacy metrics. To this end, we explain and discuss a selection of over 80 privacy metrics and introduce categorizations based on the aspect of privacy they measure, their required inputs, and the type of data that needs protection. In addition, we present a method on how to choose privacy metrics based on nine questions that help identify the right privacy metrics for a given scenario, and highlight topics where additional work on privacy metrics is needed. Our survey spans multiple privacy domains and can be understood as a general framework for privacy measurement.

Funder

Campus for Research Excellence And Technological Enterprise (CREATE) programme

Singapore National Research Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3