Method-level phase behavior in java workloads

Author:

Georges Andy1,Buytaert Dries1,Eeckhout Lieven1,De Bosschere Koen1

Affiliation:

1. Ghent University, Gent, Belgium

Abstract

Java workloads are becoming more and more prominent on various computing devices. Understanding the behavior of a Java workload which includes the interaction between the application and the virtual machine (VM), is thus of primary importance during performance analysis and optimization. Moreover, as contemporary software projects are increasing in complexity, automatic performance analysis techniques are indispensable. This paper proposes an off-line method-level phase analysis approach for Java workloads that consists of three steps. In the first step, the execution time is computed for each method invocation. Using an off-line tool, we subsequently analyze the dynamic call graph (that is annotated with the method invocations' execution times) to identify method-level phases. Finally, we measure performance characteristics for each of the selected phases. This is done using hardware performance monitors. As such, our approach allows for linking microprocessor-level information at the individual methods in the Java application's source code. This is extremely interesting information during performance analysis and optimization as programmers can use this information to optimize their code. We evaluate our approach in the Jikes RVM on an IA-32 platform using the SPECjvm98 and SPECjbb2000 benchmarks. This is done according to a number of important criteria: the overhead during profiling, the variability within and between the phases, its applicability in Java workload characterization (measuring performance characteristics of the various VM components) and application bottleneck identification.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DJXPerf: Identifying Memory Inefficiencies via Object-Centric Profiling for Java;Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization;2023-02-17

2. OJXPerf;Proceedings of the 44th International Conference on Software Engineering;2022-05-21

3. Flex-LIONS: A Silicon Photonic Bandwidth-Reconfigurable Optical Switch Fabric;IEICE Transactions on Communications;2020-11-01

4. A Survey of Phase Classification Techniques for Characterizing Variable Application Behavior;IEEE Transactions on Parallel and Distributed Systems;2020-01-01

5. Evaluating the effectiveness of program data features for guiding memory management;Proceedings of the International Symposium on Memory Systems;2019-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3