Learning Gaze-aware Compositional GAN from Limited Annotations

Author:

Aranjuelo Nerea1ORCID,Huang Siyu2ORCID,Arganda-Carreras Ignacio3ORCID,Unzueta Luis1ORCID,Otaegui Oihana1ORCID,Pfister Hanspeter4ORCID,Wei Donglai5ORCID

Affiliation:

1. Fundación Vicomtech, Basque Research and Technology Alliance, Spain

2. Clemson University, USA

3. University of the Basque Country, Spain and Ikerbasque, Spain and Donostia International Physics Center, Spain and Biofisika Institute, Spain

4. Harvard John A. Paulson School of Engineering and Applied Sciences, MA, USA

5. Boston College, MA, USA

Abstract

Gaze-annotated facial data is crucial for training deep neural networks (DNNs) for gaze estimation. However, obtaining these data is labor-intensive and requires specialized equipment due to the challenge of accurately annotating the gaze direction of a subject. In this work, we present a generative framework to create annotated gaze data by leveraging the benefits of labeled and unlabeled data sources. We propose a Gaze-aware Compositional GAN that learns to generate annotated facial images from a limited labeled dataset. Then we transfer this model to an unlabeled data domain to take advantage of the diversity it provides. Experiments demonstrate our approach's effectiveness in generating within-domain image augmentations in the ETH-XGaze dataset and cross-domain augmentations in the CelebAMask-HQ dataset domain for gaze estimation DNN training. We also show additional applications of our work, which include facial image editing and gaze redirection.

Funder

NSF (National Science Foundation)-IIS

University of the Basque Country

NSF

Basque Government

Publisher

Association for Computing Machinery (ACM)

Reference46 articles.

1. Ahmed A Abdelrahman, Thorsten Hempel, Aly Khalifa, and Ayoub Al-Hamadi. 2022. L2CS-Net: fine-grained gaze estimation in unconstrained environments. arXiv preprint arXiv:2203.03339 (2022).

2. Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure

3. A Regression-Based User Calibration Framework for Real-Time Gaze Estimation

4. Valentin Bazarevsky, Yury Kartynnik, Andrey Vakunov, Karthik Raveendran, and Matthias Grundmann. 2019. Blazeface: Sub-millisecond neural face detection on mobile gpus. arXiv preprint arXiv:1907.05047 (2019).

5. Sagie Benaim and Lior Wolf. 2018. One-shot unsupervised cross domain translation. advances in neural information processing systems 31 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3