Composable Finite State Machine-based Modeling for Quality-of-Information-aware Cyber-physical Systems

Author:

Rosales Rafael1,Paulitsch Michael1

Affiliation:

1. Intel Labs Europe, Neubiberg

Abstract

Time plays a major role in the specification of Cyber-physical Systems (CPS) behavior with concurrency, timeliness, asynchrony, and resource limits as their main characteristics. In addition to timeliness , the specification of CPS needs to assess and unambiguously define its behavior with respect to the other Quality-of-Information (QoI) properties: (1) Correctness, (2) Completeness, (3) Consistency, and (4) Accuracy. Very often, CPS need to handle these QoI properties, and any combination thereof, multiple times when performing computation and communication processes. However, a model-driven and systematic approach to specify CPS behavior that jointly considers combined QoI aspects is possible but missing in existing methodologies. As the first contribution of this work, we provide an extension to an established model of computation (MoC) based on “Functions driven by Finite State Machine” (FunState) to enable a model-driven composition mechanism to create CPS behavior specifications from reusable components. Second, we present a novel set of design patterns to illustrate the modeling of QoI-aware CPS specifications that can be applied in several state-of-the-art Electronic System Level (ESL) methodologies. The time semantics of the MoC are formalized using the tagged-signal-model, and the presented model-driven approach enables the composition of multiple design patterns. The main benefits of the presented model-driven approach and design patterns to create CPS specifications are as follows: (a) reduce modeling effort, errors, and time through the reuse of known recipes to re-incurring tasks and allow to automatically generate repetitive control flows based on extended Finite State Machines; (b) increase system robustness and facilitate the creation of holistic QoI management allowing to unambiguously define system behavior for scenarios with single/multiple QoI requirement violations in different models of computation; (c) dynamically validate timing behavior of system implementations to enable a multi-objective optimization of nonfunctional properties that influence CPS timing. We demonstrate the aforementioned benefits through the modeling and evaluation of an infrastructure-assisted automated driving case study using Infrastructure-to-Vehicle (I2V) communications to distribute QoI critical road environment information.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3