Optimizing TTL Caches under Heavy-Tailed Demands

Author:

Ferragut Andrés1,Rodriguez Ismael1,Paganini Fernando1

Affiliation:

1. Universidad ORT Uruguay, Montevideo, Uruguay

Abstract

In this paper we analyze the hit performance of cache systems that receive file requests with general arrival distributions and different popularities. We consider timer-based (TTL) policies, with differentiated timers over which we optimize. The optimal policy is shown to be related to the monotonicity of the hazard rate function of the inter-arrival distribution. In particular for decreasing hazard rates, timer policies outperform the static policy of caching the most popular contents. We provide explicit solutions for the optimal policy in the case of Pareto-distributed inter-request times and a Zipf distribution of file popularities, including a compact fluid characterization in the limit of a large number of files. We compare it through simulation with classical policies, such as least-recently-used and discuss its performance. Finally, we analyze extensions of the optimization framework to a line network of caches.

Funder

Air Force Office of Scientific Research

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Edge Caching for Individualized Demand Dynamics;IEEE/ACM Transactions on Networking;2024-08

2. A collaborative cache allocation strategy for performance and link cost in mobile edge computing;The Journal of Supercomputing;2024-06-29

3. Utility-Driven Optimization of TTL Cache Hierarchies Under Network Delays;2024 IFIP Networking Conference (IFIP Networking);2024-06-03

4. A Learning-Based Caching Mechanism for Edge Content Delivery;Proceedings of the 15th ACM/SPEC International Conference on Performance Engineering;2024-05-07

5. CodeCrunch: Improving Serverless Performance via Function Compression and Cost-Aware Warmup Location Optimization;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1;2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3