Affiliation:
1. Arizona State University, Tempe, AZ, USA
Abstract
Mean-field models have been used to study large-scale and complex stochastic systems, such as large-scale data centers and dense wireless networks, using simple deterministic models (dynamical systems). This paper analyzes the approximation error of mean-field models for continuous-time Markov chains (CTMC), and focuses on mean-field models that are represented as finite-dimensional dynamical systems with a unique equilibrium point. By applying Stein's method and the perturbation theory, the paper shows that under some mild conditions, if the mean-field model is
globally asymptotically stable
and
locally exponentially stable
, the
mean square difference
between the stationary distribution of the stochastic system with size
M
and the equilibrium point of the corresponding mean-field system is
O(1/M).
The result of this paper establishes a general theorem for establishing the convergence and the approximation error (i.e., the rate of convergence) of a large class of CTMCs to their mean-field limit by mainly looking into the stability of the mean-field model, which is a deterministic system and is often easier to analyze than the CTMCs. Two applications of mean-field models in data center networks are presented to demonstrate the novelty of our results.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献