Improved Achievability and Converse Bounds for Erdos-Renyi Graph Matching

Author:

Cullina Daniel1,Kiyavash Negar1

Affiliation:

1. University of Illinois at Urbana-Champaign, Urbana, IL, USA

Abstract

We consider the problem of perfectly recovering the vertex correspondence between two correlated Erdos-Renyi (ER) graphs. For a pair of correlated graphs on the same vertex set, the correspondence between the vertices can be obscured by randomly permuting the vertex labels of one of the graphs. In some cases, the structural information in the graphs allow this correspondence to be recovered. We investigate the information-theoretic threshold for exact recovery, i.e. the conditions under which the entire vertex correspondence can be correctly recovered given unbounded computational resources. Pedarsani and Grossglauser provided an achievability result of this type. Their result establishes the scaling dependence of the threshold on the number of vertices. We improve on their achievability bound. We also provide a converse bound, establishing conditions under which exact recovery is impossible. Together, these establish the scaling dependence of the threshold on the level of correlation between the two graphs. The converse and achievability bounds differ by a factor of two for sparse, significantly correlated graphs.

Funder

U.S. Army Research Laboratory

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Attributed Graph Alignment;IEEE Transactions on Information Theory;2024-08

2. Database Matching Under Noisy Synchronization Errors;IEEE Transactions on Information Theory;2024-06

3. On the Feasible Region of Efficient Algorithms for Attributed Graph Alignment;IEEE Transactions on Information Theory;2024-05

4. Testing Thresholds for High-Dimensional Sparse Random Geometric Graphs;SIAM Journal on Computing;2024-02-27

5. Blind Graph Matching Using Graph Signals;IEEE Transactions on Signal Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3