Design Space Exploration of 3D Network-on-Chip

Author:

Lee Dongjin1,Das Sourav1,Kim Dae Hyun1,Doppa Janardhan Rao1,Pande Partha Pratim1ORCID

Affiliation:

1. Washington State University, Pullman, WA

Abstract

High-performance and energy-efficient Network-on-Chip (NoC) architecture is one of the crucial components of the manycore processing platforms. A very promising NoC architecture recently proposed in the literature is the three-dimensional small-world NoC (3D SWNoC). Due to short vertical links in 3D integration and the robustness of small-world networks, the 3D SWNoC architecture outperforms its other 3D counterparts. However, the performance of 3D SWNoC is highly dependent on the placement of the links and associated routers. In this article, we propose a sensitivity-based link placement algorithm (SEN) to optimize the performance of 3D SWNoC. The sensitivity of a link in a NoC measures the importance of the link. The SEN algorithm optimizes the performance of 3D SWNoC by calculating the sensitivities of all the links in the NoC and removing the least important link repeatedly. We compare the performance of SEN algorithm with simulated annealing- (SA) and recently proposed machine-learning-based (ML) optimization algorithm. The optimized 3D SWNoC obtained by the proposed SEN algorithm achieves, on average, 11.5% and 13.6% lower latency and 18.4% and 21.7% lower energy-delay product than those optimized by the SA and ML algorithms respectively. In addition, the SEN algorithm is 26 to 33 times faster than the SA algorithm for the optimization of 64-, 128-, and 256-core 3D SWNoC designs. The performance gain provided by the SEN-, SA-, and ML-based methods also depend on the characteristics of the benchmarks under consideration. If the traffic pattern generated by a benchmark does not have enough variation, then the ML-based method does not have adequate opportunity to optimize the network. However, we find that ML-based methodology has faster convergence time than SEN and SA for bigger systems. The ML-based optimization algorithm is almost 4 and 97 times faster than the SEN- and SA-based algorithm for a system with 256 cores.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Based Hardware Security Methods for Internet-of-Things Applications;Frontiers of Quality Electronic Design (QED);2022-09-06

2. RAMAN: Reinforcement Learning Inspired Algorithm for Mapping Applications onto Mesh Network-on-Chip;2021 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP);2021-11

3. High temperature nanoindentation of tungsten: Modelling and experimental validation;International Journal of Refractory Metals and Hard Materials;2020-06

4. MOOS;ACM Transactions on Embedded Computing Systems;2019-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3