Finding the k Shortest Simple Paths: Time and Space Trade-offs

Author:

Al Zoobi Ali1ORCID,Coudert David1ORCID,Nisse Nicolas1ORCID

Affiliation:

1. Université Côte d’Azur, Inria, CNRS, I3S, France

Abstract

The k shortest simple path problem ( k SSP) asks to compute a set of top- k shortest simple paths from a source to a sink in a digraph. Yen (1971) proposed an algorithm with the best-known polynomial time complexity for this problem. Since then, the problem has been widely studied from an algorithm engineering perspective. The most noticeable proposals are the node-classification (NC) algorithm (Feng, 2014) and the sidetracks-based (SB) algorithm (Kurz, Mutzel, 2016). The latest offers the best running time at the price of a significant memory consumption. We first show how to speed up the SB algorithm using dynamic updates of shortest path trees resulting in a faster algorithm (SB*) with the same memory consumption. We then propose the parsimonious SB (PSB) algorithm that significantly reduces the memory consumption of SB at the cost of a small increase of the running time. Furthermore, we propose the postponed node-classification (PNC) algorithm that combines the best of the NC and the SB algorithms. It offers a significant speed up compared to the SB algorithm while using the same amount of memory as the NC algorithm. Our experimental results on complex networks show that all the considered algorithms have low memory consumption, and that the PSB algorithm is the fastest. On road networks, the relative performances of the algorithms depend on the number k of requested paths. Indeed, when the number k of requested paths is small (i.e., k ≤ 20 in our experiments), the SB* algorithm is the fastest among the considered algorithms, but it suffers from a large memory consumption and it offers very bad performances on some queries. When the number of requested paths is large (i.e., larger than 20 according to our experiments), the PNC algorithm is the fastest among the considered algorithms on road networks and it has a low memory footprint. The PNC algorithm is therefore a better choice on road networks.

Funder

French government

National Research Agency

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Reference37 articles.

1. Ali Al Zoobi, David Coudert, and Nicolas Nisse. 2021. k Shortest Simple Paths (Version 2.0). Retrieved from https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths

2. Metabolic reconstruction using shortest paths

3. Route Planning in Transportation Networks

4. M. Betz and H. Hild. 1995. Language models for a spelled letter recognizer. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Vol. 1. IEEE, 856–859. DOI:10.1109/ICASSP.1995.479829

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3