Automatic predicate abstraction of C programs

Author:

Ball Thomas1,Majumdar Rupak2,Millstein Todd3,Rajamani Sriram K.1

Affiliation:

1. Microsoft Research

2. U.C. Berkeley

3. Univ. of Washington

Abstract

Model checking has been widely successful in validating and debugging designs in the hardware and protocol domains. However, state-space explosion limits the applicability of model checking tools, so model checkers typically operate on abstractions of systems. Recently, there has been significant interest in applying model checking to software. For infinite-state systems like software, abstraction is even more critical. Techniques for abstracting software are a prerequisite to making software model checking a reality. We present the first algorithm to automatically construct a predicate abstraction of programs written in an industrial programming language such as C, and its implementation in a tool — C2BP. The C2BP tool is part of the SLAM toolkit, which uses a combination of predicate abstraction, model checking, symbolic reasoning, and iterative refinement to statically check temporal safety properties of programs. Predicate abstraction of software has many applications, including detecting program errors, synthesizing program invariants, and improving the precision of program analyses through predicate sensitivity. We discuss our experience applying the C2BP predicate abstraction tool to a variety of problems, ranging from checking that list-manipulating code preserves heap invariants to finding errors in Windows NT device drivers.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 211 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Runtime verification on abstract finite state models;Journal of Systems and Software;2024-10

2. Deductive Verification of Parameterized Embedded Systems Modeled in SystemC;Lecture Notes in Computer Science;2023-12-30

3. Counterexample Driven Quantifier Instantiations with Applications to Distributed Protocols;Proceedings of the ACM on Programming Languages;2023-10-16

4. An evaluation of approaches to model checking real-time task schedulability analysis;International Journal on Software Tools for Technology Transfer;2023-01-19

5. A novel data-driven approach on inferring loop invariants for C programs;Journal of Computer Languages;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3