Affiliation:
1. University of Otago, Dunedin, New Zealand
Abstract
Software effort estimation
(SEE) is a core activity in all software processes and development lifecycles. A range of increasingly complex methods has been considered in the past 30 years for the prediction of effort, often with mixed and contradictory results. The comparative assessment of effort prediction methods has therefore become a common approach when considering how best to predict effort over a range of project types. Unfortunately, these assessments use a variety of sampling methods and error measurements, making comparison with other work difficult. This article proposes an
automatically transformed linear model
(ATLM) as a suitable baseline model for comparison against SEE methods. ATLM is simple yet performs well over a range of different project types. In addition, ATLM may be used with mixed numeric and categorical data and requires no parameter tuning. It is also deterministic, meaning that results obtained are amenable to replication. These and other arguments for using ATLM as a baseline model are presented, and a reference implementation described and made available. We suggest that ATLM should be used as a baseline of effort prediction quality for all future model comparisons in SEE.
Funder
an Otago University School of Business Summer School
Publisher
Association for Computing Machinery (ACM)
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献