Metamorphic Testing of Secure Multi-party Computation (MPC) Compilers

Author:

Li Yichen1ORCID,Xiao Dongwei1ORCID,Liu Zhibo1ORCID,Pang Qi2ORCID,Wang Shuai1ORCID

Affiliation:

1. Hong Kong University of Science and Technology, Hong Kong, China

2. Carnegie Mellon University, Pittsburgh, USA

Abstract

The demanding need to perform privacy-preserving computations among multiple data owners has led to the prosperous development of secure multi-party computation (MPC) protocols. MPC offers protocols for parties to jointly compute a function over their inputs while keeping those inputs private. To date, MPC has been widely adopted in various real-world, privacy-sensitive sectors, such as healthcare and finance. Moreover, to ease the adoption of MPC, industrial and academic MPC compilers have been developed to automatically translate programs describing arbitrary MPC procedures into low-level MPC executables. Compiling high-level descriptions into high-efficiency MPC executables is challenging: the compilation often involves converting high-level languages into several intermediate representations (IR), e.g., arithmetic or boolean circuits, optimizing the computation/communication cost, and picking proper MPC protocols (and underlying virtual machines) for a particular task and threat model. Various optimizations and heuristics are employed during the compilation procedure to improve the efficiency of the generated MPC executables. Despite the prosperous adoption of MPC compilers by industrial vendors and academia, a principled and systematic understanding of the correctness of MPC compilers does not yet exist. To fill this critical gap, this paper introduces MT-MPC, a metamorphic testing (MT) framework specifically designed for MPC compilers to effectively uncover erroneous compilations. Our approach proposes three metamorphic relations (MRs) that are tailored for MPC programs to mutate high-level MPC programs (compiler inputs). We then examine if MPC compilers yield semantics-equivalent MPC executables regarding the original and mutated MPC programs by comparing their execution results. Real-world MPC compilers exhibit a high level of engineering quality. Nevertheless, we detected 4,772 inputs that can result in erroneous compilations in three popular MPC compilers available on the market. While the discovered error-triggering inputs do not cause the MPC compilers to crash directly, they can lead to the generation of incorrect MPC executables, jeopardizing the underlying dependability of the computation. With substantial manual effort and help from the MPC compiler developers, we uncovered thirteen bugs in these MPC compilers by debugging them using the error-triggering inputs. Our proposed testing frameworks and findings can be used to guide developers in their efforts to improve MPC compilers.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3