Affiliation:
1. Northwestern Polytechnical University, P.R. China
2. The University of New South Wales, Sydney, Australia
Abstract
The massive spread of false information on social media has become a global risk, implicitly influencing public opinion and threatening social/political development. False information detection (FID) has thus become a surging research topic in recent years. As a promising and rapidly developing research field, we find that much effort has been paid to new research problems and approaches of FID. Therefore, it is necessary to give a comprehensive review of the new research trends of FID. We first give a brief review of the literature history of FID, based on which we present several new research challenges and techniques of it, including early detection, detection by multimodal data fusion, and explanatory detection. We further investigate the extraction and usage of various crowd intelligence in FID, which paves a promising way to tackle FID challenges. Finally, we give our views on the open issues and future research directions of FID, such as model adaptivity/generality to new events, embracing of novel machine learning models, aggregation of crowd wisdom, adversarial attack and defense in detection models, and so on.
Funder
National Key R8D Program of China
National Natural Science Foundation of China
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献