Approximate Constraint Satisfaction Requires Large LP Relaxations

Author:

Chan Siu On1,Lee James R.2,Raghavendra Prasad3,Steurer David4

Affiliation:

1. Chinese University of Hong Kong

2. University of Washington

3. University of California, Berkeley

4. Cornell University

Abstract

We prove super-polynomial lower bounds on the size of linear programming relaxations for approximation versions of constraint satisfaction problems. We show that for these problems, polynomial-sized linear programs are no more powerful than programs arising from a constant number of rounds of the Sherali--Adams hierarchy. In particular, any polynomial-sized linear program for M ax C ut has an integrality gap of ½ and any such linear program for M ax 3-S at has an integrality gap of ⅞.

Funder

Microsoft Research Faculty Fellowship

NSF

NSF Career

Alfred P. Sloan Fellowship

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultimate Greedy Approximation of Independent Sets in Subcubic Graphs;Algorithmica;2024-09-12

2. Semidefinite Programming and Linear Equations vs. Homomorphism Problems;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

3. Near Optimal Alphabet-Soundness Tradeoff PCPs;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

4. Lifts for Voronoi Cells of Lattices;Discrete & Computational Geometry;2023-07-17

5. Approximate Graph Colouring and the Hollow Shadow;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3