Bayesian Covariance Representation with Global Informative Prior for 3D Action Recognition

Author:

Zhang Jianhai1ORCID,Feng Zhiyong1,Su Yong2,Xing Meng1

Affiliation:

1. College of Intelligence and Computing, Tianjin University, Tianjin, China

2. Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, Tianjin Normal University, Tianjin, China

Abstract

For the merits of high-order statistics and Riemannian geometry, covariance matrix has become a generic feature representation for action recognition. An independent action can be represented by an empirical statistics over all of its pose samples. Two major problems of covariance include the following: (1) it is prone to be singular so that actions fail to be represented properly, and (2) it is short of global action/pose-aware information so that expressive and discriminative power is limited. In this article, we propose a novel Bayesian covariance representation by a prior regularization method to solve the preceding problems. Specifically, covariance is viewed as a parametric maximum likelihood estimate of Gaussian distribution over local poses from an independent action. Then, a Global Informative Prior (GIP) is generated over global poses with sufficient statistics to regularize covariance. In this way, (1) singularity is greatly relieved due to sufficient statistics, (2) global pose information of GIP makes Bayesian covariance theoretically equivalent to a saliency weighting covariance over global action poses so that discriminative characteristics of actions can be represented more clearly. Experimental results show that our Bayesian covariance with GIP efficiently improves the performance of action recognition. In some databases, it outperforms the state-of-the-art variant methods that are based on kernels, temporal-order structures, and saliency weighting attentions, among others.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3