AIDA

Author:

He Tian1,Blum Brian M.1,Stankovic John A.1,Abdelzaher Tarek1

Affiliation:

1. Department of Computer Science, University of Virginia, Charlottesville, VA

Abstract

Sensor networks, a novel paradigm in distributed wireless communication technology, have been proposed for various applications including military surveillance and environmental monitoring. These systems deploy heterogeneous collections of sensors capable of observing and reporting on various dynamic properties of their surroundings in a time sensitive manner. Such systems suffer bandwidth, energy, and throughput constraints that limit the quantity of information transferred from end-to-end. These factors coupled with unpredictable traffic patterns and dynamic network topologies make the task of designing optimal protocols for such networks difficult. Mechanisms to perform data-centric aggregation utilizing application-specific knowledge provide a means to augmenting throughput, but have limitations due to their lack of adaptation and reliance on application-specific decisions. We, therefore, propose a novel aggregation scheme that adaptively performs application-independent data aggregation in a time sensitive manner. Our work isolates aggregation decisions into a module that resides between the network and the data-link layer and does not require any modifications to the currently existing MAC and network layer protocols. We take advantage of queuing delay and the broadcast nature of wireless communication to concatenate network units into an aggregate using a novel adaptive feedback scheme to schedule the delivery of this aggregate to the MAC layer for transmission. In our evaluation we show that end-to-end transmission delay is reduced by as much as 80% under heavy traffic loads. Additionally, we show as much as a 50% reduction in transmission energy consumption with an overall reduction in header overhead. Theoretical analysis, simulation, and a test-bed implementation on Berkeley's MICA motes are provided to validate our claims.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference33 articles.

1. ANSI/IEEE. 1999. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. ANSI/IEEE Std 802.11 1999 Edition. ANSI/IEEE. 1999. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. ANSI/IEEE Std 802.11 1999 Edition.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3