ProteusTM

Author:

Didona Diego1,Diegues Nuno1,Kermarrec Anne-Marie2,Guerraoui Rachid3,Neves Ricardo1,Romano Paolo1

Affiliation:

1. INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

2. INRIA, Rennes, France

3. EPFL, Lausagne, Switzerland

Abstract

The Transactional Memory (TM) paradigm promises to greatly simplify the development of concurrent applications. This led, over the years, to the creation of a plethora of TM implementations delivering wide ranges of performance across workloads. Yet, no universal implementation fits each and every workload. In fact, the best TM in a given workload can reveal to be disastrous for another one. This forces developers to face the complex task of tuning TM implementations, which significantly hampers their wide adoption. In this paper, we address the challenge of automatically identifying the best TM implementation for a given workload. Our proposed system, ProteusTM, hides behind the TM interface a large library of implementations. Underneath, it leverages a novel multi-dimensional online optimization scheme, combining two popular learning techniques: Collaborative Filtering and Bayesian Optimization. We integrated ProteusTM in GCC and demonstrate its ability to switch between TMs and adapt several configuration parameters (e.g., number of threads). We extensively evaluated ProteusTM, obtaining average performance <3% from optimal, and gains up to 100x over static alternatives.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3