Affiliation:
1. Hangzhou Dianzi University, Hangzhou, China
2. Shanghai University, Shanghai, China
3. University of Salento, Lecce, Italy
Abstract
With the fast-developing domain of cyber-physical systems (CPS), constructing the CPS with high-quality services becomes an imperative task. As one of the effective solutions for information overload in CPS construction, quality of service (QoS)-aware service recommendation has drawn much attention in academia and industry. However, the lack of most QoS values limits the recommendation performance and it is time-consuming for users to get the QoS values by invoking all the services. Therefore, a powerful prediction model is required to predict the unobserved QoS values. Considering the fact that most existing QoS prediction models are unable to effectively address the data-sparsity problem, a novel two-stage framework called AgQ is proposed for QoS prediction. Specifically, a data augmentation strategy is designed in the first stage to enlarge the training set by drawing additional virtual instances. In the second stage, a prediction model is applied that considers both virtual and factual instances during the training procedure. We conduct extensive experiments on the WSDream dataset to demonstrate the effectiveness of the our QoS prediction framework and verify that the data augmentation strategy can indeed alleviate the data-sparsity problem. In terms of mean absolute error, taking the Multilayer Perceptron model as an example, the maximum improvement achieves 5% under 5% sparsity.
Funder
NSFC
Key Research & Development Plan of Zhejiang
Fundamental Research Funds for the Provincial Universities of Zhejiang
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献