1. Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, Lanjun Wang, Peter Cho-Ho Lam, and Yong Zhang. 2021. Robust Counterfactual Explanations on Graph Neural Networks. CoRR , Vol. abs/2107.04086 (2021). showeprint[arXiv]2107.04086 https://arxiv.org/abs/2107.04086
2. Link and Node Removal in Real Social Networks: A Review
3. Derrick Blakely, Jack Lanchantin, and Yanjun Qi. 2021. Time and space complexity of graph convolutional networks. Accessed on: Dec , Vol. 31 (2021).
4. Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020. Simple and Deep Graph Convolutional Networks. In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 1725--1735. https://proceedings.mlr.press/v119/chen20v.html
5. Yongqiang Chen Han Yang Yonggang Zhang Kaili Ma Tongliang Liu Bo Han and James Cheng. 2022. Understanding and Improving Graph Injection Attack by Promoting Unnoticeability. https://doi.org/10.48550/ARXIV.2202.08057