1. Approximating power indices: theoretical and empirical analysis
2. Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, LanjunWang, Peter Cho-Ho Lam, and Yong Zhang. 2021. Robust Counterfactual Explanations on Graph Neural Networks. In Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., 5644--5655. https://proceedings.neurips.cc/paper_files/ paper/2021/file/2c8c3a57383c63caef6724343eb62257-Paper.pdf
3. Federico Baldassarre and Hossein Azizpour. 2019. Explainability Techniques for Graph Convolutional Networks. arXiv:1905.13686 [cs.LG]
4. Weighted voting doesn't work: A mathematical analysis;John F;Rutgers L. Rev.,1965
5. Polynomial calculation of the Shapley value based on sampling