ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation

Author:

Lin Jianghao1ORCID,Shan Rong1ORCID,Zhu Chenxu2ORCID,Du Kounianhua1ORCID,Chen Bo2ORCID,Quan Shigang1ORCID,Tang Ruiming2ORCID,Yu Yong1ORCID,Zhang Weinan1ORCID

Affiliation:

1. Shanghai Jiao Tong University, Shanghai, China

2. Huawei Noah's Ark Lab, Shenzhen, China

Funder

Shanghai Municipal Science and Technology Major Project

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

ACM

Reference94 articles.

1. Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. 2023. Tallrec: An eective and ecient tuning framework to align large language model with recommendation. arXiv preprint arXiv:2305.00447 (2023).

2. David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A Rael. 2019. Mixmatch: A holistic approach to semi-supervised learning. Advances in neural information processing systems 32 (2019).

3. Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. 2022. Language models are realistic tabular data generators. arXiv preprint arXiv:2210.06280 (2022).

4. Tom Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared D Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell et al. 2020. Language models are few-shot learners. Advances in neural information processing systems 33 (2020) 1877--1901.

5. Aldo Gael Carranza, Rezsa Farahani, Natalia Ponomareva, Alex Kurakin, Matthew Jagielski, and Milad Nasr. 2023. Privacy-Preserving Recommender Systems with Synthetic Query Generation using Dierentially Private Large Language Models. arXiv preprint arXiv:2305.05973 (2023).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DisCo: Towards Harmonious Disentanglement and Collaboration between Tabular and Semantic Space for Recommendation;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. How Can Recommender Systems Benefit from Large Language Models: A Survey;ACM Transactions on Information Systems;2024-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3