1. Moloud Abdar Farhad Pourpanah Sadiq Hussain Dana Rezazadegan Li Liu Mohammad Ghavamzadeh Paul Fieguth Xiaochun Cao Abbas Khosravi U Rajendra Acharya et al. 2021. A review of uncertainty quantification in deep learning: Techniques applications and challenges. Information fusion Vol. 76 (2021) 243--297.
2. Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and Simon Lacoste-Julien. 2017. A Closer Look at Memorization in Deep Networks. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 70). PMLR, 233--242.
3. David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A Raffel. 2019. Mixmatch: A holistic approach to semi-supervised learning. Advances in neural information processing systems , Vol. 32 (2019).
4. Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking. In International Conference on Learning Representations. 1--13.
5. Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning