1. FedRolex: Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction;Alam Samiul;Advances in Neural Information Processing Systems,2022
2. Jimmy Ba and Rich Caruana. 2014. Do Deep Nets Really Need to be Deep? Advances In Neural Information Processing Systems, Vol. 27 (2014).
3. A Model of Inductive Bias Learning
4. Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv preprint arXiv:1406.1078 (2014).
5. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805 (2018).