1. Maxwell Mbabilla Aladago and Lorenzo Torresani. [n. d.]. Slot Machines: Discovering Winning Combinations of Random Weights in Neural Networks. In38th International Conference on Machine Learning, ICML 2021.
2. Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. [n. d.]. FedRolex: Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction. InAdvances in Neural Information Processing Systems 35 (NeurIPS 2022).
3. Sameer Bibikar, Haris Vikalo, Zhangyang Wang, and Xiaohan Chen. [n. d.]. Federated Dynamic Sparse Training: Computing Less, Communicating Less, Yet Learning Better. In36th AAAI Conference on Artificial Intelligence (AAAI 2022).
4. Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. [n. d.]. TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning. InNeurIPS 2020.
5. Sebastian Caldas and Jakub Kone?ný et al. [n. d.]. Expanding the Reach of Federated Learning by Reducing Client Resource Requirements. CoRR 2018 ([n. d.]).