FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices

Author:

Wang Haozhao1ORCID,Jia Yabo2ORCID,Zhang Meng3ORCID,Hu Qinghao3ORCID,Ren Hao4ORCID,Sun Peng5ORCID,Wen Yonggang4ORCID,Zhang Tianwei4ORCID

Affiliation:

1. S-Lab, National Technological University, Singapore, Singapore

2. Zhejiang University, Hangzhou, China

3. S-Lab, Nanyang Technological University, Singapore, Singapore

4. Nanyang Technological University, Singapore, Singapore

5. Sensetime & Shanghai AI Lab, Shanghai, China

Funder

The research is supported under the National Key R\&D Program of China (2022ZD0160201) and the RIE2020 Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contributions from the industry partner(s). This work is supported by National Natural Science Foundation of China under grants U1836204, U1936108, 62206102, and Science and Technology Support Program of Hubei Province under grant 2022BAA046 award number(s)

Publisher

ACM

Reference47 articles.

1. Maxwell Mbabilla Aladago and Lorenzo Torresani. [n. d.]. Slot Machines: Discovering Winning Combinations of Random Weights in Neural Networks. In38th International Conference on Machine Learning, ICML 2021.

2. Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. [n. d.]. FedRolex: Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction. InAdvances in Neural Information Processing Systems 35 (NeurIPS 2022).

3. Sameer Bibikar, Haris Vikalo, Zhangyang Wang, and Xiaohan Chen. [n. d.]. Federated Dynamic Sparse Training: Computing Less, Communicating Less, Yet Learning Better. In36th AAAI Conference on Artificial Intelligence (AAAI 2022).

4. Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. [n. d.]. TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning. InNeurIPS 2020.

5. Sebastian Caldas and Jakub Kone?ný et al. [n. d.]. Expanding the Reach of Federated Learning by Reducing Client Resource Requirements. CoRR 2018 ([n. d.]).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Is Aggregation the Only Choice? Federated Learning via Layer-wise Model Recombination;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3