Optimal-Time Dictionary-Compressed Indexes

Author:

Christiansen Anders Roy1,Ettienne Mikko Berggren1,Kociumaka Tomasz2ORCID,Navarro Gonzalo3,Prezza Nicola4ORCID

Affiliation:

1. The Technical University of Denmark, Denmark

2. Bar-Ilan University, Israel, and University of California, Berkeley, US

3. CeBiB and University of Chile, Santiago, Chile

4. Ca’ Foscari University of Venice, Italy

Abstract

We describe the first self-indexes able to count and locate pattern occurrences in optimal time within a space bounded by the size of the most popular dictionary compressors. To achieve this result, we combine several recent findings, including string attractors —new combinatorial objects encompassing most known compressibility measures for highly repetitive texts—and grammars based on locally consistent parsing . More in detail, letγ be the size of the smallest attractor for a text T of length n . The measureγ is an (asymptotic) lower bound to the size of dictionary compressors based on Lempel–Ziv, context-free grammars, and many others. The smallest known text representations in terms of attractors use space O (γ log ( n /γ)), and our lightest indexes work within the same asymptotic space. Let ε > 0 be a suitably small constant fixed at construction time, m be the pattern length, and occ be the number of its text occurrences. Our index counts pattern occurrences in O ( m +log 2+ε n ) time and locates them in O ( m +( occ +1)log ε n ) time. These times already outperform those of most dictionary-compressed indexes, while obtaining the least asymptotic space for any index searching within O (( m + occ ),polylog, n ) time. Further, by increasing the space to O (γ log ( n /γ)log ε n ), we reduce the locating time to the optimal O ( m + occ ), and within O (γ log ( n /γ)log n ) space we can also count in optimal O ( m ) time. No dictionary-compressed index had obtained this time before. All our indexes can be constructed in O ( n ) space and O ( n log n ) expected time. As a by-product of independent interest, we show how to build, in O ( n ) expected time and without knowing the sizeγ of the smallest attractor (which is NP-hard to find), a run-length context-free grammar of size O (γ log ( n /γ)) generating (only) T . As a result, our indexes can be built without knowingγ.

Funder

ERC

Chile, and Basal Funds

ISF

ANID

BSF

Fondecyt

MIUR-SIR CMACBioSeq

MPM under the EU’s Horizon 2020 Research and Innovation Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. String Attractors of Some Simple-Parry Automatic Sequences;Theory of Computing Systems;2024-09-10

2. Compressed Consecutive Pattern Matching;2024 Data Compression Conference (DCC);2024-03-19

3. Sketching and Streaming for Dictionary Compression;2024 Data Compression Conference (DCC);2024-03-19

4. Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast;Lecture Notes in Computer Science;2024

5. Space-Efficient Conversions from SLPs;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3