Firmness Analysis of Real-time Tasks

Author:

Behrouzian Amir1ORCID,Ara Hadi Alizadeh1ORCID,Geilen Marc1ORCID,Goswami Dip1,Basten Twan2

Affiliation:

1. Eindhoven University of Technology, Eindhoven, The Netherlands

2. Eindhoven University of Technology 8 ESI, TNO, Eindhoven, The Netherlands

Abstract

( m , k )-firm real-time tasks require meeting the deadline of at least m jobs out of any k consecutive jobs. When compared to hard real-time tasks, ( m , k )$-firm tasks open up the possibility of tighter resource-dimensioning in implementations. Firmness analysis verifies the satisfaction of ( m , k )-firmness conditions. Scheduling policies under which a set of periodic tasks runs on a resource influence the number of deadline missed jobs. Therefore, the nature of the firmness analysis problem depends on scheduling policies. In this work, we present Firmness Analysis (FAn) methods for three common scheduling policies—synchronous and asynchronous Static Priority Preemptive (SPP) policies and Time Division Multiple Access (TDMA). We first introduce the Balloon and Rake problem—the problem of striking the maximum number of balloons in a balloon line with a rake. We show that the common core of firmness analysis problems can be abstracted as the Balloon and Rake problem. Next, we prove that the Finite Point method is a solution to the Balloon and Rake problem. We illustrate how existing FAn methods for the TDMA and asynchronous SPP policies can be adapted to use the same solution framework for the Balloon and Rake problem. Using the solution of the Balloon and Rake problem, we adapt the existing FAn methods to synchronous SPP scheduling policies. The scalability of the FAn methods is compared with that of a timed-automata approach, a brute-force approach, and a Mixed Integer Linear Programing method. The FAn methods scale substantially better to firmness analysis problem instances with a large k and a high number of tasks.

Funder

ARTEMIS joint undertaking under the ALMARVI project

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State-based switching multi-rate controller for improving resource utilization on predictable and composable platforms;Microprocessors and Microsystems;2022-06

2. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints;2022 IEEE 28th Real-Time and Embedded Technology and Applications Symposium (RTAS);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3