Virtual machine monitor-based lightweight intrusion detection

Author:

Azmandian Fatemeh1,Moffie Micha1,Alshawabkeh Malak1,Dy Jennifer1,Aslam Javed1,Kaeli David1

Affiliation:

1. Northeastern University

Abstract

As virtualization technology gains in popularity, so do attempts to compromise the security and integrity of virtualized computing resources. Anti-virus software and firewall programs are typically deployed in the guest virtual machine to detect malicious software. These security measures are effective in detecting known malware, but do little to protect against new variants of intrusions. Intrusion detection systems (IDSs) can be used to detect malicious behavior. Most intrusion detection systems for virtual execution environments track behavior at the application or operating system level, using virtualization as a means to isolate themselves from a compromised virtual machine. In this paper, we present a novel approach to intrusion detection of virtual server environments which utilizes only information available from the perspective of the virtual machine monitor (VMM). Such an IDS can harness the ability of the VMM to isolate and manage several virtual machines (VMs), making it possible to provide monitoring of intrusions at a common level across VMs. It also offers unique advantages over recent advances in intrusion detection for virtual machine environments. By working purely at the VMM-level, the IDS does not depend on structures or abstractions visible to the OS (e.g., file systems), which are susceptible to attacks and can be modified by malware to contain corrupted information (e.g., the Windows registry). In addition, being situated within the VMM provides ease of deployment as the IDS is not tied to a specific OS and can be deployed transparently below different operating systems. Due to the semantic gap between the information available to the VMM and the actual application behavior, we employ the power of data mining techniques to extract useful nuggets of knowledge from the raw, low-level architectural data. We show in this paper that by working entirely at the VMM-level, we are able to capture enough information to characterize normal executions and identify the presence of abnormal malicious behavior. Our experiments on over 300 real-world malware and exploits illustrate that there is sufficient information embedded within the VMM-level data to allow accurate detection of malicious attacks, with an acceptable false alarm rate.

Publisher

Association for Computing Machinery (ACM)

Reference49 articles.

1. The SNORT Network IDS. www.snort.org. The SNORT Network IDS. www.snort.org.

2. The Apache Software Foundation. ab - Apache HTTP server benchmarking tool. http://www.apache.org/. The Apache Software Foundation. ab - Apache HTTP server benchmarking tool. http://www.apache.org/.

3. Xen and the art of virtualization

4. LOF

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3