Evaluating the Impact of Using Multiple-Metal Layers on the Layout Area of Switch Blocks for Tile-Based FPGAs in FinFET 7nm

Author:

Rostami Sani Sajjad1ORCID,Ye Andy1ORCID

Affiliation:

1. Toronto Metropolitan University, Canada

Abstract

A new area model for estimating the layout area of switch blocks is introduced in this work. The model is based on a realistic layout strategy. As a result, it not only takes into consideration the active area that is needed to construct a switch block but also the number of metal layers available and the actual dimensions of these metals. The model assigns metal layers to the routing tracks in a way that reduces the number of vias that are needed to connect different routing tracks together while maintaining the tile-based structure of FPGAs. It also takes into account the wiring area required for buffer insertion for long wire segments. The model is evaluated based on the layouts constructed in the ASAP7 FinFET 7nm Predictive Design Kit. We found that the new model, while specific to the layout strategy that it employs, improves upon the traditional active-based area estimation models by considering the growth of the metal area independently from the growth of the active area. As a result, the new model is able to more accurately estimate the layout area by predicting when the metal area will overtake the active area as the number of routing tracks is increased. This ability allows the more accurate estimation of the true layout cost of FPGA fabrics at the early floor planning and architectural exploration stage; and this increase in accuracy can encourage a wider use of custom FPGA fabrics that target specific sets of benchmarks in future SOC designs. Furthermore, our data indicate that the conclusions drawn from several significant prior architectural studies remain to be correct under FinFET geometries and wiring area considerations despite their exclusive use of active-only area models. This correctness is due to the small channel widths, around 30–60 tracks per channel, of the architectures that these studies investigate. For architectures that approach the channel width of modern commercial FPGAs with more than 100–200 tracks per channel, our data show that wiring area models justified by detailed layout considerations are an essential addition to active area models in the correct prediction of the implementation area of FPGAs.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3