Advanced Simulation of Droplet Microfluidics

Author:

Grimmer Andreas1ORCID,Hamidović Medina1,Haselmayr Werner1,Wille Robert1

Affiliation:

1. Johannes Kepler University Linz, Austria

Abstract

The complexity of droplet microfluidics grows with the implementation of parallel processes and multiple functionalities on a single device. This poses a severe challenge to the engineer designing the corresponding microfluidic networks. In today’s design processes, the engineer relies on calculations, assumptions, simplifications, as well as his/her experiences and intuitions. To validate the obtained specification of the microfluidic network, usually a prototype is fabricated and physical experiments are conducted thus far. In case the design does not implement the desired functionality, this prototyping iteration is repeated—obviously resulting in an expensive and time-consuming design process. To avoid unnecessary debugging loops involving fabrication and testing, simulation methods could help to initially validate the specification of the microfluidic network before any prototype is fabricated. However, state-of-the-art simulation tools come with severe limitations, which prevent their utilization for practically relevant applications. More precisely, they are often not dedicated to droplet microfluidics, cannot handle the required physical phenomena, are not publicly available, and can hardly be extended. In this work, we present an advanced simulation approach for droplet microfluidics that addresses these shortcomings and, eventually, allows simulating practically relevant applications. To this end, we propose a simulation framework at the one-dimensional analysis model, which directly works on the specification of the design, supports essential physical phenomena, is publicly available, and is easy to extend. Evaluations and case studies demonstrate the benefits of the proposed simulator: While current state-of-the-art tools were not applicable for practically relevant microfluidic networks, the proposed simulator allows reducing the design time and costs, e.g., of a drug screening device from one person month and USD 1200, respectively, to just a fraction of that.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3