Mathematical Modeling and Analysis of Product Rating with Partial Information

Author:

Xie Hong1,Lui John C. S.1

Affiliation:

1. The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People's Republic of China

Abstract

Many Web services like Amazon, Epinions, and TripAdvisor provide historical product ratings so that users can evaluate the quality of products. Product ratings are important because they affect how well a product will be adopted by the market. The challenge is that we only have partial information on these ratings: each user assigns ratings to only a small subset of products. Under this partial information setting, we explore a number of fundamental questions. What is the minimum number of ratings a product needs so that one can make a reliable evaluation of its quality? How may users’ misbehavior, such as cheating in product rating, affect the evaluation result? To answer these questions, we present a probabilistic model to capture various important factors (e.g., rating aggregation rules, rating behavior) that may influence the product quality assessment under the partial information setting. We derive the minimum number of ratings needed to produce a reliable indicator on the quality of a product. We extend our model to accommodate users’ misbehavior in product rating. We derive the maximum fraction of misbehaving users that a rating aggregation rule can tolerate and the minimum number of ratings needed to compensate. We carry out experiments using both synthetic and real-world data (from Amazon and TripAdvisor). We not only validate our model but also show that the “average rating rule” produces more reliable and robust product quality assessments than the “majority rating rule” and the “median rating rule” in aggregating product ratings. Last, we perform experiments on two movie rating datasets (from Flixster and Netflix) to demonstrate how to apply our framework to improve the applications of recommender systems.

Funder

HK GRF

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference39 articles.

1. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions

2. Maximizing product adoption in social networks

3. Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer. Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3