Abstract
An R-module M is said to be (quasi) τ-discrete if M is τ-lifting and has the property (D_2) (respectively, has the property (D_3)), where τ is a preradical in R-mod. It is shown that: (1) direct summands of a (quasi) τ-discrete module are (quasi) τ-discrete; (2) a projective module M is τ-discrete iff M/(τ(M)) is semisimple and τ(M) is QSL; (3) if a projective module M is Soc-lifting, then M/(Soc(M)) is Soc-discrete and Rad(M/Soc(M) ) is semisimple.
Publisher
Erzincan Universitesi Fen Bilimleri Ensitusu Dergisi
Reference9 articles.
1. [1] Al-Khazzi, I., and Smith, P.F., (1991) Modules with chain conditions on superfluous submodules, Communications in Algebra, Vol. 19(8), pp. 2331-2351.
2. [2] Al-Takhman, K., Lomp, C. and Wisbauer, R. (2006) τ-complement and τ-supplement submodules, Algebra and Discrete Mathematics, 3, 1-15.
3. [3] Alkan, M. (2009) On τ-lifting modules and τ-semiperfect modules, Turkish Journal of Mathematics, 33(2), 117-130.
4. [4] Büyükaşık, E., Mermut, E. and Özdemir, S. (2010) Rad-supplemented modules, Rendiconti del Seminario Matematico della Universita di Padova, 124, 157-177.
5. [5] Mohamed S.H. and Müller, B.J. (1990) Continuous and Discrete Modules”, London Mathematical Society, LNS 147 Cambridge University Press, Cambridge.