Abstract
In this study, we investigated the general convexity of functions which is named preinvexity. Firstly, we generalized Hermite-Hadamard type integral inequality for two-dimensional preinvex functions. Then, we obtained a generalization of Ostrowski type integral inequality for two-dimensional preinvex functions. Besides, we derived some new generalized inequalities related to these functions.
Publisher
Erzincan Universitesi Fen Bilimleri Ensitusu Dergisi
Reference21 articles.
1. Alomari, M.W. 2017. “A Generalization of Hermite–Hadamard’s Inequality”, Kragujevac Journal of Mathematics, 41(2), 313-328.
2. Ben-Israel, A. and Mond, B. 1986. “What is Invexity?”, Journal of the Australian Mathematical Society Series B-Applied Mathematics, 28(1), 1-9.
3. Dragomir, S.S. 2001. “On Hadamards Inequality for Convex Functions on The Coordinates in A Rectangle from The Plane”, Taiwanese Journal of Mathematics, 4, 775–788.
4. Hadamard, J. 1893. “Étude sur les propriétés des fonctions entières et en particulier d.une function considerée par Riemann”, Journal de Mathématiques Pures et Appliquées, 58, 171-215.
5. Hanson, M.A. 1981. “On Sufficiency of The Kuhn-Tucker Conditions”, Journal of Mathematical Analysis and Applications, 80, 545-550.