Affiliation:
1. ATATURK UNIVERSITY, FACULTY OF ENGINEERING, DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
Abstract
Limitations caused by traditional breast cancer detection and screening techniques have encouraged researchers to investigate alternative solutions. This study examines the use of a microwave-based approach for tumor detection in breast tissue and related tumor type classification using matched-filtering. Radar-like confocal microwave imaging (CMI) method constructs the foundation of such tumor detection approach. In particular, a microwave pulse is first transmitted, then back-scattered pulses are collected. All major reflective sites in the breast tissue are detected by repeating this procedure on a microwave pulse transmission-reception grid, aligning captured signals in-time to focus on a particular region in the breast tissue and superimposing such time-shifted signals to improve signal-to-clutter level. In the observed signals, clutter is originated by the heterogeneity of the breast tissue while signal is originated by a tumor site as a function of its water content.
All calculations, in the study, were performed computationally in terms of a 3D Finite-Difference Time-Domain (FDTD) simulation models. For the antenna system, two cross-polarized resistively loaded bow-ties antennas were used in the computational model, and the tumor site was modeled using five different size and morphologies. Matched-filtering, on the other hand, was performed matching such obtained observations with that of a homogenous breast tissue, namely clutter-free model. Performance of the proposed approach was tested for two different antenna array resolutions, and it was observed that this parameter is important for successful detection and classification of a tumor-site in a realistic heterogenous breast tissue model.
Publisher
Erzincan Universitesi Fen Bilimleri Ensitusu Dergisi
Reference26 articles.
1. American Cancer Society. Cancer Facts & Figures 2021; American Cancer Society: Atlanta, GA, USA, 2021. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html (accessed on 21 April 2022)
2. S. Kwon, S. Lee, “Recent advances in microwave imaging for breast cancer detection”, Int. J. Biomed. Imaging. 2016, 5054912
3. S.G. Orel, M.D. Schnall, “MR imaging of the breast for the detection, diagnosis, and staging of breast cancer”, Radiology 2001, 220, 13–30
4. M.A. Aldhaeebi, T.S. Almoneef, H. Attia, O.M. Ramahi, “Near-Field Microwave Loop Array Sensor for Breast Tumor Detection”, IEEE Sens. J. 2019, 19, 11867-11872
5. B. Bocquet, J. Van de Velde, A. Mamouni, Y. Leroy, G. Giaux, J. Delannoy, D. Delvalee, “Microwave radiometric imaging at 3 GHz for the exploration of breast tumours”, IEEE Trans. Microw. Theory Tech. 1990, 38, 791–793