Abstract
A module M is called virtually semisimple (resp. virtually extending) if every submodule (resp. complement submodule) of M is isomorphic to a direct summand of M. It is known that virtually extending modules is a generalization of virtually semisimple modules. In this paper, the relationships between virtually extending modules and other generalizations of virtually semisimple modules are examined. Moreover, we introduce a new generalization of virtually semisimple modules; namely CH modules: We say a module M is a c-epi-retractable (or briefly CH module) if any complement submodule of M is a homomorphic image of M. CH modules contains the class of virtually extending modules and the class of epi-retractable modules. We also give some basic properties of this new module class.
Funder
Anadolu University Scientific Research Projects Commission
Publisher
Erzincan Universitesi Fen Bilimleri Ensitusu Dergisi
Reference21 articles.
1. [1] Clark J., Lomp C., Vanaja N., Wisbauer R., (2008) Lifting modules: supplements and projectivity in module theory. Springer Science & Business Media.
2. [2] Behboodi M., Daneshvar A., Vedadi M. R., (2018) Virtually semisimple modules and a
generalization of the Wedderburn-Artin theorem, Comm. Algebra, 46(6), 2384-239.
3. [3] Karabacak F., Koşan M. T., Quynh T. C., Taşdemir Ö., (2022) On modules and rings in which complements are isomorphic to direct summands. Comm. Algebra, 50(3), 1154- 1168.
4. [4] Taşdemir Ö., Karabacak F., (2019) Generalized SIP-modules, Hacettepe J. Math. Stat. 48(4), 1137-1145.
5. [5] Taşdemir Ö., Karabacak F., (2020) Generalized SSP-modules, Comm. Algebra, 48(3), 1068-1078.