PREDICTION OF AIR POLLUTION AND AN AIR QUALITY INDEX USING MACHINE LEARNING TECHNIQUES

Author:

Ramesh L.,

Abstract

Air pollution is the “world’s largest environmental health threat”, causing 7 million deaths worldwide every year. Its major constituents are PM2.5, PM10 and the harmful green house gases S02, N02, C0 and other effluents from vehicles and factories affecting not only humans but also other living organisms both on land and sea. The only effective solution to this global issue is to implement machine learning algorithms to predict the AQI (Air Quality Index) that can make the people aware of the condition of the air of a certain region such that certain actions could be issued by the government for the improvement of the air quality in the future. The prime objective behind this project is to predict the AQI based on the concentration of PM2.5, PM10, S02, N02, C0 as well as weather conditions like temperature, pressure and humidity .Hence the data set is combined from various web sources like cpcb and uci repository in order to bring accuracy in the prediction and to justify whether the Quality of air is suitable or not. This prediction will be brought about with the help of some supervised machine learning algorithms and the observation and the result will state which algorithm is giving better accuracy in prediction of AQI and which one is giving less error

Publisher

IJARCS International Journal of Advanced Research in Computer Science

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Input Bi-LSTM Autoencoder Model with Wavelet Transform for Air Quality Prediction;2024 International Conference on Multimedia Analysis and Pattern Recognition (MAPR);2024-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3