Author:
Campion John R,O'Connor Donal B,Lahiff Conor
Abstract
The number and variety of applications of artificial intelligence (AI) in gastrointestinal (GI) endoscopy is growing rapidly. New technologies based on machine learning (ML) and convolutional neural networks (CNNs) are at various stages of development and deployment to assist patients and endoscopists in preparing for endoscopic procedures, in detection, diagnosis and classification of pathology during endoscopy and in confirmation of key performance indicators. Platforms based on ML and CNNs require regulatory approval as medical devices. Interactions between humans and the technologies we use are complex and are influenced by design, behavioural and psychological elements. Due to the substantial differences between AI and prior technologies, important differences may be expected in how we interact with advice from AI technologies. Human–AI interaction (HAII) may be optimised by developing AI algorithms to minimise false positives and designing platform interfaces to maximise usability. Human factors influencing HAII may include automation bias, alarm fatigue, algorithm aversion, learning effect and deskilling. Each of these areas merits further study in the specific setting of AI applications in GI endoscopy and professional societies should engage to ensure that sufficient emphasis is placed on human-centred design in development of new AI technologies.
Publisher
Baishideng Publishing Group Inc.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献